Evaluation of a Bayesian inference network for ligand-based virtual screening

نویسندگان

  • Beining Chen
  • Christoph Müller
  • Peter Willett
چکیده

BACKGROUND Bayesian inference networks enable the computation of the probability that an event will occur. They have been used previously to rank textual documents in order of decreasing relevance to a user-defined query. Here, we modify the approach to enable a Bayesian inference network to be used for chemical similarity searching, where a database is ranked in order of decreasing probability of bioactivity. RESULTS Bayesian inference networks were implemented using two different types of network and four different types of belief function. Experiments with the MDDR and WOMBAT databases show that a Bayesian inference network can be used to provide effective ligand-based screening, especially when the active molecules being sought have a high degree of structural homogeneity; in such cases, the network substantially out-performs a conventional, Tanimoto-based similarity searching system. However, the effectiveness of the network is much less when structurally heterogeneous sets of actives are being sought. CONCLUSION A Bayesian inference network provides an interesting alternative to existing tools for ligand-based virtual screening.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementing relevance feedback in ligand-based virtual screening using Bayesian inference network.

Recently, the use of the Bayesian network as an alternative to existing tools for similarity-based virtual screening has received noticeable attention from researchers in the chemoinformatics field. The main aim of the Bayesian network model is to improve the retrieval effectiveness of similarity-based virtual screening. To this end, different models of the Bayesian network have been developed....

متن کامل

An Enhancement of Bayesian Inference Network for Ligand-Based Virtual Screening using Features Selection

Problem statement: Similarity based Virtual Screening (VS) deals with a large amount of data containing irrelevant and/or redundant fragments or features. Recent use of Bayesian network as an alternative for existing tools for similarity based VS has received noticeable attention of the researchers in the field of chemoinformatics. Approach: To this end, different models of Bayesian network hav...

متن کامل

Ligand-Based Virtual Screening Using Bayesian Inference Network and Reweighted Fragments

Many of the similarity-based virtual screening approaches assume that molecular fragments that are not related to the biological activity carry the same weight as the important ones. This was the reason that led to the use of Bayesian networks as an alternative to existing tools for similarity-based virtual screening. In our recent work, the retrieval performance of the Bayesian inference netwo...

متن کامل

New Fragment Weighting Scheme for the Bayesian Inference Network in Ligand-Based Virtual Screening

Many of the conventional similarity methods assume that molecular fragments that do not relate to biological activity carry the same weight as the important ones. One possible approach to this problem is to use the Bayesian inference network (BIN), which models molecules and reference structures as probabilistic inference networks. The relationships between molecules and reference structures in...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009